41 research outputs found

    Analyzing the Effects of Applying IoT to a Metal-Mechanical Company

    Get PDF
    Purpose: The purpose of this paper is to show the improvements obtained through the application of IoT in a company of the metal-mechanical sector. Design/methodology/approach: The methodology used has been the collection of data before and after the application of the IoT in the process to manufacture tool-machines. Findings: Improvements obtained in some aspects of the process are very high (above 30%), making it a process that is more efficient allowing reduce costs. Research limitations/implications: Some aspects or details are difficult to quantify because there are no measurable parameters. Practical implications: Technological advances and new technologies applied to the industry, allows significant improvements in production. Social implications: Improvements obtained in the process can improve the conditions of workers. Originality/value: Originality of the paper is very high, because there are not many publications of study or practical cases in this sector, due to the confidentiality and competitiveness of the sector.Peer Reviewe

    Using the Internet of Things in a Production Planning context

    Get PDF
    [EN] One of the most novel concepts that have been applied to companies in recent years is ¿Sensing Enterprises¿. This concept implies a drastic change in the way companies operate. Within the framework of this concept, another necessary and complementary concept arises, the so-called ¿Internet of Things¿ concept. It seems evident that the Internet of Things can generally help to improve the functioning of the processes undertaken in companies, particularly one of the key processes; the production planning process. Despite being able to find abundant information on both themes, and the apparent relevance that using the Internet of Things could have for the production planning process, no works that have jointly studied these matters were found. To bridge this gap, the present work intends to reflect on how the characteristics and advantages of the Internet of Things can be put to good use in the production planning process.Alarcón Valero, F.; Pérez Perales, D.; Boza, A. (2016). Using the Internet of Things in a Production Planning context. Brazilian Journal of Operations & Production Management. 13(1):72-76. doi:10.14488/BJOPM.2016.v13.n1.a8S727613

    Knowledge Registration Module Design for Enterprise Resilience Enhancement

    Full text link
    [EN] The present situation characterized by the coronavirus pandemic has made businesses to be aware about the importance of being resilient to face undesirable impacts like the one caused by this pandemic. One of the constituent capacities of enterprise resilience is the recovery ability to bounce back and restore the operations after disruptions¿ occurrence. This paper is focused on the recovery perspective of enterprise resilience and its enhancement through knowledge registration. This research proposes the design of the Knowledge Registration Module addressed to the register of valuable information at different knowledge level with the main aim to reuse this piece of information to facilitate the recovery process when the same or an unexpected similar disruptive event occurs. Future research lines will be based on applying the knowledge approach to real cases to study the influence of knowledge management in the enhancement of enterprise resilience.This research was supported by the Programme to support the academic career of the faculty of the Universitat Politecnica de Valencia 2019/2020 as part of Project 'Enterprise and Supply Chain Resilience Enhancement' granted to Dr. Raquel Sanchis, who wishes to thank Universita Politecnica delle Marche, particularly the Department of Industrial Engineering and Mathematical Science, for its support, during her stay, to conduct the present research.Sanchis, R.; Marcucci, G.; Alarcón Valero, F.; Poler, R. (2021). Knowledge Registration Module Design for Enterprise Resilience Enhancement. IFAC-PapersOnLine. 54(1):1029-1034. https://doi.org/10.1016/j.ifacol.2021.08.1221029103454

    Identification of Reverse Logistics Decision Types from Mathematical Models

    Get PDF
    [EN] Purpose: The increase in social awareness, politics and environmental regulation, the scarcity of raw materials and the desired ¿green¿ image, are some of the reasons that lead companies to decide for implement processes of Reverse Logistics (RL). At the time when incorporate new RL processes as key business processes, new and important decisions need to be made. Identification and knowledge of these decisions, including the information available and the implications for the company or supply chain, will be fundamental for decision-makers to achieve the best results. In the present work, the main types of RL decisions are identified. Design/methodology/approach: This paper is based on the analysis of mathematical models designed as tools to aid decision making in the field of RL. Once the types of interest work to be analyzed are defined, those studies that really deal about the object of study are searched and analyzed. The decision variables that are taken at work are identified and grouped according to the type of decision and, finally, are showed the main types of decisions used in mathematical models developed in the field of RL. Findings: The principal conclusion of the research is that the most commonly addressed decisions with mathematical models in the field of RL are those related to the network¿s configuration, followed by tactical/operative decisions such as the selections of product¿s treatments to realize and the policy of returns or prices, among other decisions. Originality/value: The identification of the main decisions types of the reverse logistics will allow the managers of these processes to know and understand them better, while offer an integrated vision of them, favoring the achievement of better results.Cortés Pellicer, P.; Alarcón Valero, F. (2018). Identification of Reverse Logistics Decision Types from Mathematical Models. Journal of Industrial Engineering and Management. 11(2):239-249. https://doi.org/10.3926/jiem.2530S23924911

    Project portfolio selection for increasing sustainability in supply chains

    Full text link
    [EN] Sustainability practices impact on the competitiveness of organizations. Enterprises need approaches that both support the implementation of these practices by helping to define the strategic elements of sustainable supply chains and prioritize projects to increase profitability. The purpose of this paper is to propose an approach using the Analytic Hierarchy Process that supports the portfolio project decision by aligning the project selection process to the strategic objectives of a supply chain that pursue sustainability. This approach will benefit enterprises to prioritize projects that have the highest impact on the sustainability strategy of the supply chain over time. The approach has been applied to an Agri-food supply chain.Authors of this publication acknowledge the contribution of the Project GV/2017/065 "Development of a decision support tool for the management and improvement of sustainability in supply chains" funded by the Regional Government of Valencia.Verdecho Sáez, MJ.; Pérez Perales, D.; Alarcón Valero, F. (2020). Project portfolio selection for increasing sustainability in supply chains. Economics and business letters. 9(4):317-325. https://doi.org/10.17811/ebl.9.4.2020.317-325S3173259

    Sustainability vs. Circular Economy from a Disposition Decision Perspective: A Proposal of a Methodology and an Applied Example in SMEs

    Full text link
    [EN] Disposition Decision (DD) consists of deciding how to treat a recovered product, and it is one of the most important decisions in reverse logistics. Any of the selected disposition alternatives will have a significant impact on the enterprise sustainability. However, the most sustainable alternative may not be an alternative to make circular economy (CE) possible. In these cases, if the company wishes to adopt a CE strategy, it will have to switch from the most sustainable alternative to a less sustainable one that CE allows. Then, how much should be sacrificed for each sustainability dimension to make CE possible? This paper proposes a methodology for quantitatively comparing the most sustainable disposition alternative and the most sustainable CE alternative. This comparison allows small and medium enterprises (SMEs) to know how exactly all dimensions increase or decrease when selecting the most sustainable CE disposition alternative and to, therefore, assess the interest of adopting a CE policy. The proposed methodology is applied to a used tire recovery company. The results of this example show that the CE alternative offers a better environmental result but presents worst economic and social results. This example can be used as a guide for future applications other SMEs.The authors would like to acknowledge the predisposition of the recovery and treatment company of used tires by facilitating all necessary data to be used in the example application. The support of the Project GV/2017/065 "Development of a decision support tool for the management and improvement of sustainability in supply chains" funded by the Regional Government of Valencia is gratefully acknowledged. The authors also thank the anonymous reviewers and assistant editor who reviewed earlier versions of this paper.Alarcón Valero, F.; Cortés-Pellicer, P.; Pérez Perales, D.; Sanchis, R. (2020). Sustainability vs. Circular Economy from a Disposition Decision Perspective: A Proposal of a Methodology and an Applied Example in SMEs. Sustainability. 12(23):1-26. https://doi.org/10.3390/su122310109S1261223Pieroni, M. P. P., McAloone, T. C., & Pigosso, D. C. A. (2019). Business model innovation for circular economy and sustainability: A review of approaches. Journal of Cleaner Production, 215, 198-216. doi:10.1016/j.jclepro.2019.01.036Geissdoerfer, M., Savaget, P., Bocken, N. M. P., & Hultink, E. J. (2017). The Circular Economy – A new sustainability paradigm? Journal of Cleaner Production, 143, 757-768. doi:10.1016/j.jclepro.2016.12.048Geisendorf, S., & Pietrulla, F. (2017). The circular economy and circular economic concepts-a literature analysis and redefinition. Thunderbird International Business Review, 60(5), 771-782. doi:10.1002/tie.21924Millar, N., McLaughlin, E., & Börger, T. (2019). The Circular Economy: Swings and Roundabouts? Ecological Economics, 158, 11-19. doi:10.1016/j.ecolecon.2018.12.012Prieto-Sandoval, V., Jaca, C., & Ormazabal, M. (2018). Towards a consensus on the circular economy. Journal of Cleaner Production, 179, 605-615. doi:10.1016/j.jclepro.2017.12.224Kalmykova, Y., Sadagopan, M., & Rosado, L. (2018). Circular economy – From review of theories and practices to development of implementation tools. Resources, Conservation and Recycling, 135, 190-201. doi:10.1016/j.resconrec.2017.10.034Korhonen, J., Honkasalo, A., & Seppälä, J. (2018). Circular Economy: The Concept and its Limitations. Ecological Economics, 143, 37-46. doi:10.1016/j.ecolecon.2017.06.041Mota, B., Gomes, M. I., Carvalho, A., & Barbosa-Povoa, A. P. (2015). Towards supply chain sustainability: economic, environmental and social design and planning. Journal of Cleaner Production, 105, 14-27. doi:10.1016/j.jclepro.2014.07.052Guarnieri, P., Camara e Silva, L., & Vieira, B. (2020). How to Assess Reverse Logistics of e-Waste Considering a Multicriteria Perspective? A Model Proposition. Logistics, 4(4), 25. doi:10.3390/logistics4040025Agrawal, S., & Singh, R. K. (2019). Analyzing disposition decisions for sustainable reverse logistics: Triple Bottom Line approach. Resources, Conservation and Recycling, 150, 104448. doi:10.1016/j.resconrec.2019.104448Farahani, S., Otieno, W., & Barah, M. (2019). Environmentally friendly disposition decisions for end-of-life electrical and electronic products: The case of computer remanufacture. Journal of Cleaner Production, 224, 25-39. doi:10.1016/j.jclepro.2019.03.182Hazen, B. T., Hall, D. J., & Hanna, J. B. (2012). Reverse logistics disposition decision‐making. International Journal of Physical Distribution & Logistics Management, 42(3), 244-274. doi:10.1108/09600031211225954Agrawal, S., Singh, R. K., & Murtaza, Q. (2015). A literature review and perspectives in reverse logistics. Resources, Conservation and Recycling, 97, 76-92. doi:10.1016/j.resconrec.2015.02.009Kumar, S., & Malegeant, P. (2006). Strategic alliance in a closed-loop supply chain, a case of manufacturer and eco-non-profit organization. Technovation, 26(10), 1127-1135. doi:10.1016/j.technovation.2005.08.002Singh, R. K., & Agrawal, S. (2018). Analyzing disposition strategies in reverse supply chains: fuzzy TOPSIS approach. Management of Environmental Quality: An International Journal, 29(3), 427-443. doi:10.1108/meq-12-2017-0177Agrawal, S., Singh, R. K., & Murtaza, Q. (2016). Disposition decisions in reverse logistics: Graph theory and matrix approach. Journal of Cleaner Production, 137, 93-104. doi:10.1016/j.jclepro.2016.07.045Skinner, L. R., Bryant, P. T., & Glenn Richey, R. (2008). Examining the impact of reverse logistics disposition strategies. International Journal of Physical Distribution & Logistics Management, 38(7), 518-539. doi:10.1108/09600030810900932Prahinski, C., & Kocabasoglu, C. (2006). Empirical research opportunities in reverse supply chains. Omega, 34(6), 519-532. doi:10.1016/j.omega.2005.01.003Thierry, M., Salomon, M., Van Nunen, J., & Van Wassenhove, L. (1995). Strategic Issues in Product Recovery Management. California Management Review, 37(2), 114-136. doi:10.2307/41165792Krikke, H. (2011). Impact of closed-loop network configurations on carbon footprints: A case study in copiers. Resources, Conservation and Recycling, 55(12), 1196-1205. doi:10.1016/j.resconrec.2011.07.001Geissdoerfer, M., Morioka, S. N., de Carvalho, M. M., & Evans, S. (2018). Business models and supply chains for the circular economy. Journal of Cleaner Production, 190, 712-721. doi:10.1016/j.jclepro.2018.04.159Rizos, V., Behrens, A., van der Gaast, W., Hofman, E., Ioannou, A., Kafyeke, T., … Topi, C. (2016). Implementation of Circular Economy Business Models by Small and Medium-Sized Enterprises (SMEs): Barriers and Enablers. Sustainability, 8(11), 1212. doi:10.3390/su8111212Reike, D., Vermeulen, W. J. V., & Witjes, S. (2018). The circular economy: New or Refurbished as CE 3.0? — Exploring Controversies in the Conceptualization of the Circular Economy through a Focus on History and Resource Value Retention Options. Resources, Conservation and Recycling, 135, 246-264. doi:10.1016/j.resconrec.2017.08.027A. Narayana, S., A. Elias, A., & K. Pati, R. (2014). Reverse logistics in the pharmaceuticals industry: a systemic analysis. The International Journal of Logistics Management, 25(2), 379-398. doi:10.1108/ijlm-08-2012-0073Sarkis, J., Helms, M. M., & Hervani, A. A. (2010). Reverse logistics and social sustainability. Corporate Social Responsibility and Environmental Management, 17(6), 337-354. doi:10.1002/csr.220Fleischmann, M., Krikke, H. R., Dekker, R., & Flapper, S. D. P. (2000). A characterisation of logistics networks for product recovery. Omega, 28(6), 653-666. doi:10.1016/s0305-0483(00)00022-0Sangwan, K. S. (2017). Key Activities, Decision Variables and Performance Indicators of Reverse Logistics. Procedia CIRP, 61, 257-262. doi:10.1016/j.procir.2016.11.185Mangla, S. K., Kusi-Sarpong, S., Luthra, S., Bai, C., Jakhar, S. K., & Khan, S. A. (2020). Operational excellence for improving sustainable supply chain performance. Resources, Conservation and Recycling, 162, 105025. doi:10.1016/j.resconrec.2020.105025Hazen, B. T., Wu, Y., Cegielski, C. G., Jones-Farmer, L. A., & Hall, D. J. (2012). Consumer reactions to the adoption of green reverse logistics. The International Review of Retail, Distribution and Consumer Research, 22(4), 417-434. doi:10.1080/09593969.2012.690777Krumwiede, D. W., & Sheu, C. (2002). A model for reverse logistics entry by third-party providers. Omega, 30(5), 325-333. doi:10.1016/s0305-0483(02)00049-xSouza, G. C. (2012). Closed-Loop Supply Chains: A Critical Review, and Future Research*. Decision Sciences, 44(1), 7-38. doi:10.1111/j.1540-5915.2012.00394.xKannan, G., Pokharel, S., & Sasi Kumar, P. (2009). A hybrid approach using ISM and fuzzy TOPSIS for the selection of reverse logistics provider. Resources, Conservation and Recycling, 54(1), 28-36. doi:10.1016/j.resconrec.2009.06.004Wadhwa, S., Madaan, J., & Chan, F. T. S. (2009). Flexible decision modeling of reverse logistics system: A value adding MCDM approach for alternative selection. Robotics and Computer-Integrated Manufacturing, 25(2), 460-469. doi:10.1016/j.rcim.2008.01.006Ziout, A., Azab, A., & Atwan, M. (2014). A holistic approach for decision on selection of end-of-life products recovery options. Journal of Cleaner Production, 65, 497-516. doi:10.1016/j.jclepro.2013.10.001Daugherty, P. J., Richey, R. G., Genchev, S. E., & Chen, H. (2005). Reverse logistics: superior performance through focused resource commitments to information technology. Transportation Research Part E: Logistics and Transportation Review, 41(2), 77-92. doi:10.1016/j.tre.2004.04.002Stock, J. R., & Mulki, J. P. (2009). PRODUCT RETURNS PROCESSING: AN EXAMINATION OF PRACTICES OF MANUFACTURERS, WHOLESALERS/DISTRIBUTORS, AND RETAILERS. Journal of Business Logistics, 30(1), 33-62. doi:10.1002/j.2158-1592.2009.tb00098.xTibben‐Lembke, R. S., & Rogers, D. S. (2002). Differences between forward and reverse logistics in a retail environment. Supply Chain Management: An International Journal, 7(5), 271-282. doi:10.1108/13598540210447719Fleischmann, M., Bloemhof-Ruwaard, J. M., Dekker, R., van der Laan, E., van Nunen, J. A. E. E., & Van Wassenhove, L. N. (1997). Quantitative models for reverse logistics: A review. European Journal of Operational Research, 103(1), 1-17. doi:10.1016/s0377-2217(97)00230-0Jeswiet, J., & Hauschild, M. (2005). EcoDesign and future environmental impacts. Materials & Design, 26(7), 629-634. doi:10.1016/j.matdes.2004.08.016Goggin, K., & Browne, J. (2000). The resource recovery level decision for end-of-life products. Production Planning & Control, 11(7), 628-640. doi:10.1080/095372800432098Mollenkopf, D. A., Frankel, R., & Russo, I. (2010). Creating value through returns management: Exploring the marketing-operations interface. Journal of Operations Management, 29(5), 391-403. doi:10.1016/j.jom.2010.11.004MOYER, L. K., & GUPTA, S. M. (1997). ENVIRONMENTAL CONCERNS AND RECYCLING/DISASSEMBLY EFFORTS IN THE ELECTRONICS INDUSTRY. Journal of Electronics Manufacturing, 07(01), 1-22. doi:10.1142/s0960313197000026Staikos, T., & Rahimifard, S. (2007). A decision-making model for waste management in the footwear industry. International Journal of Production Research, 45(18-19), 4403-4422. doi:10.1080/00207540701450187Mangun, D., & Thurston, D. L. (2002). Incorporating component reuse, remanufacture, and recycle into product portfolio design. IEEE Transactions on Engineering Management, 49(4), 479-490. doi:10.1109/tem.2002.807292Parlamento Europeo y del Consejo de 20 de noviembre de 2013 relativa al Programa General de Acción de la Unión en materia de Medio Ambiente hasta 2020 https://eur-lex.europa.eu/legal-content/ES/TXT/?uri=CELEX%3A32013D1386Hazen, B. T., Cegielski, C., & Hanna, J. B. (2011). Diffusion of green supply chain management. The International Journal of Logistics Management, 22(3), 373-389. doi:10.1108/09574091111181372Transforming Our World: The 2030 Agenda for Sustainable Development, Resolution 70/1, Resolution Adopted by the General Assembly on 25 September 2015 http://www.un.org/en/ga/search/view_doc.asp?symbol=A/RES/70/1Glavič, P., & Lukman, R. (2007). Review of sustainability terms and their definitions. Journal of Cleaner Production, 15(18), 1875-1885. doi:10.1016/j.jclepro.2006.12.006Santillo, D. (2007). Reclaiming the Definition of Sustainability (7 pp). Environmental Science and Pollution Research - International, 14(1), 60-66. doi:10.1065/espr2007.01.375Kirchherr, J., Reike, D., & Hekkert, M. (2017). Conceptualizing the circular economy: An analysis of 114 definitions. Resources, Conservation and Recycling, 127, 221-232. doi:10.1016/j.resconrec.2017.09.005Stahel, W. R. (2016). The circular economy. Nature, 531(7595), 435-438. doi:10.1038/531435aZink, T., & Geyer, R. (2017). Circular Economy Rebound. Journal of Industrial Ecology, 21(3), 593-602. doi:10.1111/jiec.12545Gusmerotti, N. M., Testa, F., Corsini, F., Pretner, G., & Iraldo, F. (2019). Drivers and approaches to the circular economy in manufacturing firms. Journal of Cleaner Production, 230, 314-327. doi:10.1016/j.jclepro.2019.05.044Schroeder, P., Anggraeni, K., & Weber, U. (2018). The Relevance of Circular Economy Practices to the Sustainable Development Goals. Journal of Industrial Ecology, 23(1), 77-95. doi:10.1111/jiec.12732Vermunt, D. A., Negro, S. O., Verweij, P. A., Kuppens, D. V., & Hekkert, M. P. (2019). Exploring barriers to implementing different circular business models. Journal of Cleaner Production, 222, 891-902. doi:10.1016/j.jclepro.2019.03.052Govindan, K., Soleimani, H., & Kannan, D. (2015). Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future. European Journal of Operational Research, 240(3), 603-626. doi:10.1016/j.ejor.2014.07.012Bufardi, A., Gheorghe, R., Kiritsis, D., & Xirouchakis, P. (2004). Multicriteria decision-aid approach for product end-of-life alternative selection. International Journal of Production Research, 42(16), 3139-3157. doi:10.1080/00207540410001699192Iakovou, E., Moussiopoulos, N., Xanthopoulos, A., Achillas, C., Michailidis, N., Chatzipanagioti, M., … Kikis, V. (2009). A methodological framework for end-of-life management of electronic products. Resources, Conservation and Recycling, 53(6), 329-339. doi:10.1016/j.resconrec.2009.02.001Lee, S. G., Lye, S. W., & Khoo, M. K. (2001). A Multi-Objective Methodology for Evaluating Product End-of-Life Options and Disassembly. The International Journal of Advanced Manufacturing Technology, 18(2), 148-156. doi:10.1007/s001700170086Chan, J. W. K. (2008). Product end-of-life options selection: grey relational analysis approach. International Journal of Production Research, 46(11), 2889-2912. doi:10.1080/00207540601043124Haji Vahabzadeh, A., Asiaei, A., & Zailani, S. (2015). Green decision-making model in reverse logistics using FUZZY-VIKOR method. Resources, Conservation and Recycling, 103, 125-138. doi:10.1016/j.resconrec.2015.05.023Azapagic, A., Millington, A., & Collett, A. (2006). A Methodology for Integrating Sustainability Considerations into Process Design. Chemical Engineering Research and Design, 84(6), 439-452. doi:10.1205/cherd05007Silva, N. D., Jawahir, I. S., Jr., O. D., & Russell, M. (2009). A new comprehensive methodology for the evaluation of product sustainability at the design and development stage of consumer electronic products. International Journal of Sustainable Manufacturing, 1(3), 251. doi:10.1504/ijsm.2009.023973Hula, A., Jalali, K., Hamza, K., Skerlos, S. J., & Saitou, K. (2003). Multi-Criteria Decision-Making for Optimization of Product Disassembly under Multiple Situations. Environmental Science & Technology, 37(23), 5303-5313. doi:10.1021/es0345423Jaafar, I. H., Venkatachalam, A., Joshi, K., Ungureanu, A. C., De Silva, N., Rouch, K. E., … Jawahir, I. S. (s. f.). Product Design for Sustainability: A New Assessment Methodology and Case Studies. Environmentally Conscious Mechanical Design, 25-65. doi:10.1002/9780470168202.ch2Mateus, R., & Bragança, L. (2011). Sustainability assessment and rating of buildings: Developing the methodology SBToolPT–H. Building and Environment, 46(10), 1962-1971. doi:10.1016/j.buildenv.2011.04.023Culaba, A. B., & Purvis, M. R. I. (1999). A methodology for the life cycle and sustainability analysis of manufacturing processes. Journal of Cleaner Production, 7(6), 435-445. doi:10.1016/s0959-6526(99)00231-0Andreoli, M., & Tellarini, V. (2000). Farm sustainability evaluation: methodology and practice. Agriculture, Ecosystems & Environment, 77(1-2), 43-52. doi:10.1016/s0167-8809(99)00091-2Girardi, P., & Temporelli, A. (2017). Smartainability: A Methodology for Assessing the Sustainability of the Smart City. Energy Procedia, 111, 810-816. doi:10.1016/j.egypro.2017.03.243Presley, A., Meade, L., & Sarkis, J. (2007). A strategic sustainability justification methodology for organizational decisions: a reverse logistics illustration. International Journal of Production Research, 45(18-19), 4595-4620. doi:10.1080/00207540701440220León‐Soriano, R., Jesús Muñoz‐Torres, M., & Chalmeta‐Rosaleñ, R. (2010). Methodology for sustainability strategic planning and management. Industrial Management & Data Systems, 110(2), 249-268. doi:10.1108/02635571011020331Bakar, M. S. A., & Rahimifard, S. (2007). Computer-aided recycling process planning for end-of-life electrical and electronic equipment. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221(8), 1369-1374. doi:10.1243/09544054jem801scKusi-Sarpong, S., Gupta, H., & Sarkis, J. (2018). A supply chain sustainability innovation framework and evaluation methodology. International Journal of Production Research, 57(7), 1990-2008. doi:10.1080/00207543.2018.1518607Sienkiewicz, M., Janik, H., Borzędowska-Labuda, K., & Kucińska-Lipka, J. (2017). Environmentally friendly polymer-rubber composites obtained from waste tyres: A review. Journal of Cleaner Production, 147, 560-571. doi:10.1016/j.jclepro.2017.01.121SIGNUS Memoria Web https://www.signus.es/memoria2019/Horodytska, O., Kiritsis, D., & Fullana, A. (2020). Upcycling of printed plastic films: LCA analysis and effects on the circular economy. Journal of Cleaner Production, 268, 122138. doi:10.1016/j.jclepro.2020.12213

    Aspects of Industrial Design and Their Implications for Society. Case Studies on the Influence of Packaging Design and Placement at the Point of Sale

    Full text link
    [EN] This work aims to demonstrate that product design and packaging must be aligned with the point of sale and its social purpose. Manufacturing engineering is responsible for the design, development and improvement of production systems that convert raw materials into finished products. Each product is designed to be sold to numerous potential consumers, so the importance of the stimuli surrounding the product in packaging, and at the point of sale, cannot be underestimated. The environmental, social, and ethical commitments of industrial design (and their implications in manufacturing) are establishing universal principles in a common effort to foster a more harmonious and sustainable society. This work aims to analyse, through eye tracking biometric techniques, the level of saturation of information generated by the concentration of stimuli in packaging and the retail channel, possibly creating a lower level of attention towards the product itself. This research confirms that every product associated with a manufacturing process seeks to respond to a need, so the associated responsibility is significant. This would suggest that designers incorporate knowledge from multiple fields, including marketing strategies, design, research and development, basic knowledge related to production, integration management and communication skills. More than 50% of consumer attention is dedicated to other elements/items that accompany the product, so it is important to consider this in the design phase. The results can be used to improve efficiency in both generating product attention, and stimulus design for the purchasing process.Juárez Varón, D.; Mengual Recuerda, A.; Ferrándiz Bou, S.; Alarcón Valero, F. (2021). Aspects of Industrial Design and Their Implications for Society. Case Studies on the Influence of Packaging Design and Placement at the Point of Sale. Applied Sciences. 11(2):1-16. https://doi.org/10.3390/app11020517S11611

    Emotional Impact of Dishes versus Wines on Restaurant Diners: From Haute Cuisine Open Innovation

    Get PDF
    Haute cuisine is emblematic in the world of tourism and is of fundamental importance in the economic and social life in most countries worldwide. Haute cuisine gastronomic experiences play with the senses, involving the diner, thus generating a unique experience for the customer. This empirical study aims to analyze the influence on the consumer of the characteristic stimuli of a high-level gastronomic experience in a restaurant with two Michelin stars. Using neuromarketing biometrics, combined with a qualitative research technique, the objective of this research was to determine the emotional impact of the presentation and tasting of dishes compared to wines and to draw conclusions about each variable in the general experience. The results indicate that the dishes have a greater influence on the level of interest than the wines, and both have a different emotional impact at different moments of the experience due to its duration

    A Reference Model of Reverse Logistics Process for Improving Sustainability in the Supply Chain

    Full text link
    [EN] The reverse logistics process (RLP) has become a key process for the supply chain (SC) given its importance for treating the increasing quantity of returned or recovered products and its impact on sustainability. However, the RLP is complex and involves a high degree of uncertainty and difficult decisions that affect SC efficiency. One of the aspects that can help the most to reduce this complexity and to improve SC efficiency is to formalize this process. The consulted studies agree on the numerous benefits of RLP formalization, but no tools, methodologies or specific solutions were found that help companies to advance in this matter. This work aims to develop a specific tool for RLP formalization so that its efficiency can be increased, leading to an improvement of SC sustainability. The main results comprise a reference model for RLP (RM-RLP) and an associated methodology so that any company can formalize its RLP by modeling its activities. The proposed tool (RM-RLP and methodology) is applied to a closed loop SC of relaxing chairs as an example of RLP formalization, proving its usefulness and, additionally, the improvements that can be reached in three RLP key indicators: total process duration, customer response time and the perceived autonomy and trust of the workers participating in the process.Alarcón Valero, F.; Cortés-Pellicer, P.; Pérez Perales, D.; Mengual Recuerda, A. (2021). A Reference Model of Reverse Logistics Process for Improving Sustainability in the Supply Chain. Sustainability. 13(18):1-29. https://doi.org/10.3390/su131810383S129131
    corecore